Jump to content

Standard electrode potential (data page)

From Wikipedia, the free encyclopedia

The data below tabulates standard electrode potentials (E°), in volts relative to the standard hydrogen electrode, at:

The Nernst equation allows to calculate real electrode potentials by taking into account exact concentrations, gas pressure, and temperature measured under different experimental conditions.

Electrode potentials of successive elementary half-reactions, as commonly represented in Latimer diagrams, cannot be directly added, but can be correctly determined by adding the corresponding Gibbs free energy changes (∆G°) using the general formula G° = –zFE°, i.e., the product of the number (z) of electrons transferred, the Faraday constant (F ≈ 96 485 coulombs/(mol e) ≈ 1.6022 E-19 coulomb/e) and the standard electrode potential (E°) in volt. In other words, volts cannot be directly summed up, but well electron-volts, or joules (coulombs × volts). So, F × E = 96 485 coulombs/(mol e) × 1 volt = 96 485 joules/(mol e).

For example, from Fe2+ + 2e ⇌ Fe(s) (–0.44 V), the energy to form one neutral atom of Fe(s) from one Fe2+ ion and two electrons is 2 × 0.44 eV = 0.88 eV, or 84 907 J/(mol e). That value is also the standard formation energy (∆Gf°) for an Fe2+ ion, since e and Fe(s) both have zero formation energy.

Data from different sources may cause table inconsistencies. For example:

In the hypothesis where the E3 value should still be unknown because this half-reaction is an intermediate step difficult to measure or to control. It should be calculated from the two other values E1 and E2.
How to best proceed in an easy way as standard electrode potentials are not additive?

The simplest way to sum the Gibbs energies is to directly work in electron-volts (eV) without having to convert them in joules. It is because when summing up G° = –zFE°, –F simplifies on both equation sides. This greatly facilitates the calculations, only requiring to know the number of electrons transferred and the standard electrode potentials:

G3° + ∆G1° = ∆G2°
-1·FE3 - 1·FE1 = -2·FE2
E3 + 1·E1 = 2·E2
E3 = 2·E2 – 1·E1

So, quite simply the result is:

Now, if the E3 value is finally measured by an appropriate method with a good accuracy and sufficient precision under stable and properly controlled conditions and is +0.159 V as given here above, one would observe a slight difference between calculations and the experimental measurement.

Although the difference here is not important, nor very significant, the calculated value (+0.154 V) slightly differs (∆ = 0.005 V, or 5 mV) from the value of +0.159 V directly determined by experiment. The reason likely lies in small differences, or uncertainties, in the experimental conditions, or in the inconsistent use of slightly different values of physical constants needed to determine and to report the standard electrode potentials. This small discrepancy illustrates the need to correctly manage uncertainties and their propagation in such calculations.

Table of standard electrode potentials

[edit]

Legend: (s) – solid; (l) – liquid; (g) – gas; (aq) – aqueous (default for all charged species); (Hg) – amalgam; bold – water electrolysis equations.

Element Half-reaction / V Electrons Ref.
Oxidant Reductant
Sr Sr+
+ e
Sr(s) -4.101 1 [1]
Ca Ca+
+ e
Ca(s) -3.8 1 [1]
Th Th4+
+ e
Th3+
-3.6 1 [2]
Pr Pr3+
+ e
Pr2+
-3.1 1 Estimated[3]
N 3N
2
(g) + 2H+ + 2e
2HN
3
(aq)
-3.09 2 [4][5]
Li Li+
+ e
Li(s) -3.0401 1 [5][6]: 153 
N N
2
(g) + 4H2O + 2e
2NH
2
OH
(aq) + 2OH
-3.04 2 [4]
Cs Cs+
+ e
Cs(s) -3.026 1 [5]
Ca Ca(OH)
2
+ 2e
Ca(s) + 2OH -3.02 2 [1]
Er Er3+
+ e
Er2+
-3 1 [1]
Ba Ba(OH)
2
+ 2e
Ba(s) + 2OH -2.99 2 [1]
Rb Rb+
+ e
Rb(s) -2.98 1 [5]
K K+
+ e
K(s) -2.931 1 [5]
Ba Ba2+
+ 2e
Ba(s) -2.912 2 [5]
La La(OH)
3
(s) + 3e
La(s) + 3OH -2.9 3 [5]
Fr Fr+
+ e
Fr(s) -2.9 1 [1]
Sr Sr2+
+ 2e
Sr(s) -2.899 2 [5]
Sr Sr(OH)
2
+ 2e
Sr(s) + 2OH -2.88 2 [1]
Ca Ca2+
+ 2e
Ca(s) -2.868 2 [5][6]: 153 
Li Li+
+ C
6
(s) + e
LiC
6
(s)
-2.84 1 [5]
Eu Eu2+
+ 2e
Eu(s) -2.812 2 [5]
Ra Ra2+
+ 2e
Ra(s) -2.8 2 [5]
Ho Ho3+
+ e
Ho2+ -2.8 1 [1]
Bk Bk3+
+ e
Bk2+
-2.8 1 [1]
Yb Yb2+
+ 2e
Yb(s) -2.76 2 [1]
Na Na+
+ e
Na(s) -2.71 1 [5][7]
Mg Mg+
+ e
Mg(s) -2.7 1 [1]
Nd Nd3+
+ e
Nd2+
-2.7 1 [1]
Mg Mg(OH)
2
+ 2e
Mg(s) + 2OH -2.69 2 [1]
Sm Sm2+
+ 2e
Sm(s) -2.68 2 [1]
Be Be
2
O2−
3
+ 3H2O + 4e
2Be(s) + 6OH -2.63 4 [1]
Pm Pm3+
+ e
Pm2+
-2.6 1 [1]
Dy Dy3+
+ e
Dy2+
-2.6 1 [1]
No No2+
+ 2e
No -2.5 2 [1]
Hf HfO(OH)
2
+ H2O + 4e
Hf(s) + 4OH -2.5 4 [1]
Th Th(OH)
4
+ 4e
Th(s) + 4OH -2.48 4 [1]
Md Md2+
+ 2e
Md -2.4 2 [1]
Tm Tm2+
+ 2e
Tm(s) -2.4 2 [1]
La La3+
+ 3e
La(s) -2.379 3 [5]
Y Y3+
+ 3e
Y(s) -2.372 3 [5]
Mg Mg2+
+ 2e
Mg(s) -2.372 2 [5]
Sc ScF3(aq) + 3H+ + 3e Sc(s) + 3HF(aq) -2.37 3 [6]: 792 
Zr ZrO(OH)
2
(s) + H2O + 4e
Zr(s) + 4OH -2.36 4 [5]
Pr Pr3+
+ 3e
Pr(s) -2.353 3 [1]
Ce Ce3+
+ 3e
Ce(s) -2.336 3 [1]
Er Er3+
+ 3e
Er(s) -2.331 3 [1]
Ho Ho3+
+ 3e
Ho(s) -2.33 3 [1]
Al H
2
AlO
3
+ H2O + 3e
Al(s) + 4OH -2.33 3 [1]
Nd Nd3+
+ 3e
Nd(s) -2.323 3 [1]
Tm Tm3+
+ 3e
Tm(s) -2.319 3 [1]
Al Al(OH)
3
(s) + 3e
Al(s) + 3OH -2.31 3 [8]
Sm Sm3+
+ 3e
Sm(s) -2.304 3 [1]
Fm Fm2+ + 2e Fm -2.3 2 [1]
Am Am3+
+ e
Am2+
-2.3 1 [1]
Dy Dy3+
+ 3e
Dy(s) -2.295 3 [1]
Lu Lu3+
+ 3e
Lu(s) -2.28 3 [1]
Sc ScF+
2
+ 2H+ + 3e
Sc(s) + 2HF(l) -2.28 3 [6]: 792 
Tb Tb3+
+ 3e
Tb(s) -2.28 3 [1]
Gd Gd3+
+ 3e
Gd(s) -2.279 3 [1]
H H
2
(g) + 2e
2H
-2.23 2 [1]
Es Es2+
+ 2e
Es(s) -2.23 2 [1]
Pm Pm2+
+ 2e
Pm(s) -2.2 2 [1]
Tm Tm3+
+ e
Tm2+ -2.2 1 [1]
Dy Dy2+
+ 2e
Dy(s) -2.2 2 [1]
Ac Ac3+
+ 3e
Ac(s) -2.2 3 [1]
Yb Yb3+
+ 3e
Yb(s) -2.19 3 [1]
Cf Cf2+
+ 2e
Cf(s) -2.12 2 [1]
Nd Nd2+
+ 2e
Nd(s) -2.1 2 [1]
Ho Ho2+
+ 2e
Ho(s) -2.1 2 [1]
Sc Sc3+
+ 3e
Sc(s) -2.077 3 [9]
Al AlF3−
6
+ 3e
Al(s) + 6F
-2.069 3 [1]
Cm Cm3+
+ 3e
Cm(s) -2.04 3 [1]
Pu Pu3+
+ 3e
Pu(s) -2.031 3 [1]
Pr Pr2+
+ 2e
Pr(s) -2 2 [1]
Er Er2+
+ 2e
Er(s) -2 2 [1]
Eu Eu3+
+ 3e
Eu(s) -1.991 3 [1]
Lr Lr3+
+ 3e
Lr -1.96 3 [1]
Cf Cf3+
+ 3e
Cf(s) -1.94 3 [1]
Es Es3+
+ 3e
Es(s) -1.91 3 [1]
Pa Pa4+
+ e
Pa3+
-1.9 1 [1]
Am Am2+
+ 2e
Am(s) -1.9 2 [1]
Th Th4+
+ 4e
Th(s) -1.899 4 [1]
Fm Fm3+
+ 3e
Fm -1.89 3 [1]
N N2(g) + 2H2O(l) + 4H+ + 2e 2NH3OH+ -1.87 2 [6]: 789 
Np Np3+
+ 3e
Np(s) -1.856 3 [1]
Be Be2+
+ 2e
Be(s) -1.847 2 [1]
P H
2
PO
2
+ e
P(s) + 2OH -1.82 1 [1]
U U3+
+ 3e
U(s) -1.798 3 [1]
Sr Sr2+
+ 2e
Sr(Hg) -1.793 2 [1]
B H
2
BO
3
+ H2O + 3e
B(s) + 4OH -1.79 3 [1]
Th ThO
2
+ 4H+ + 4e
Th(s) + 2H2O -1.789 4 [1]
Hf HfO2+
+ 2H+ + 4e
Hf(s) + H2O -1.724 4 [1]
P HPO2−
3
+ 2H2O + 3e
P(s) + 5OH -1.71 3 [1]
Si SiO2−
3
+ 3H2O + 4e
Si(s) + 6OH -1.697 4 [1]
Al Al3+
+ 3e
Al(s) -1.662 3 [1]
Ti Ti2+
+ 2e
Ti(s) -1.63 2 [7]
Zr ZrO
2
(s) + 4H+ + 4e
Zr(s) + 2H2O -1.553 4 [10]
Zr Zr4+
+ 4e
Zr(s) -1.45 4 [10]
Ti Ti3+
+ 3e
Ti(s) -1.37 3 [11]
Ti TiO(s) + 2H+ + 2e Ti(s) + H2O -1.31 2 [6]: 792 
B B(OH)
4
+ 4H2O(l) + 8e
BH
4
+ 8OH
-1.24 8 [6]: 788 
Ga GaO(OH)
2
+ H2O(l) + 3e
Ga(s) + 3OH -1.22 3 [6]: 788 
Ti Ti
2
O
3
(s) + 2H+ + 2e
2TiO(s) + H2O -1.23 2 [6]: 792 
Zn Zn(OH)2−
4
+ 2e
Zn(s) + 4OH -1.199 2 [10]
Mn Mn2+
+ 2e
Mn(s) -1.185 2 [10]
Fe Fe(CN)4−
6
+ 6H+ + 2e
Fe(s) + 6HCN(aq) -1.16 2 [12]
C C(s) + 3H2O(l) + 2e CH3OH(l) + 2OH -1.148 2 [6]: 788 
Cr Cr(CN)3−
6
+ e
Cr(CN)4−
6
-1.143 1 [6]: 793 
Te Te(s) + 2e Te2−
-1.143 2 [13]
V V2+
+ 2e
V(s) -1.13 2 [13]
Nb Nb3+
+ 3e
Nb(s) -1.099 3 [8]
Sn Sn(s) + 4H+ + 4e SnH
4
(g)
-1.07 4
Po Po(s) + 2e Po2−
-1.021 2 [14]
Cr [Cr(edta)(H2O)] + e [Cr(edta)(H2O)]2− -0.99 1 [6]: 793 
P 2H3PO4(aq) + 2H+ + 2e (H2PO3)2(aq) + H2O(l) -0.933 2 [6]: 789 
C CO2−
3
+ 3H+ + 2e
HCO
2
+ H2O(l)
-0.93 2 [6]: 788 
Ti TiO2+
+ 2H+ + 4e
Ti(s) + H2O -0.93 4
Si SiO
2
(quartz) + 4H+ + 4e
Si(s) + 2H2O -0.909 4 [6]: 788 
Cr Cr2+
+ 2e
Cr(s) -0.9 2 [6]: 793 
B B(OH)
3
(aq) + 3H+ + 3e
B(s) + 3H2O -0.89 3 [6]: 788 
Fe Fe(OH)
2
(s) + 2e
Fe(s) + 2OH -0.89 2 [12]
Fe Fe
2
O
3
(s) + 3H2O + 2e
2Fe(OH)
2
(s) + 2OH
-0.86 2 [12]
H 2H2O + 2e H
2
(g) + 2OH
-0.8277 2 [10]
Bi Bi(s) + 3H+ + 3e BiH
3
-0.8 3 [10]
Zn Zn2+
+ 2e
Zn(Hg) -0.7628 2 [10]
Zn Zn2+
+ 2e
Zn(s) -0.7618 2 [10]
Ta Ta
2
O
5
(s) + 10H+ + 10e
2Ta(s) + 5H2O -0.75 10
Te 2Te(s) + 2e Te2−
2
-0.74 2 [6]: 790 
Ni Ni(OH)
2
(s) + 2e
Ni(s) + 2OH -0.72 2 [1]
Nb Nb2O5(s) + 10H+ + 10e 2Nb(s) + 5H2O(l) -0.7 10 [6]: 793 
Ag Ag
2
S
(s) + 2e
2Ag(s) + S2−
(aq)
-0.69 2
Te Te2−
2
+ 4H+ + 2e
2H2Te(g) -0.64 2 [6]: 790 
Sb Sb(OH)
4
+ 3e
Sb(s) + 4OH -0.639 3 [6]: 789 
Au [Au(CN)
2
]
+ e
Au(s) + 2CN
-0.6 1
Ta Ta3+
+ 3e
Ta(s) -0.6 3 [8]
Pb PbO(s) + H2O + 2e Pb(s) + 2OH -0.580 2 [8]
Ti 2TiO
2
(s) + 2H+ + 2e
Ti
2
O
3
(s) + H2O
-0.56 2 [6]: 792 
Ga Ga3+
+ 3e
Ga(s) -0.549 3 [8]
U U4+
+ e
U3+
-0.52 1 [15]
P H
3
PO
2
(aq) + H+ + e
P(white)[note 1] + 2H2O -0.508 1 [10]
P H
3
PO
3
(aq) + 2H+ + 2e
H
3
PO
2
(aq) + H2O
-0.499 2 [10]
Ni NiO
2
(s) + 2H2O + 2e
Ni(OH)
2
(s) + 2OH
-0.49 2 [1]
Sb Sb(OH)
6
+ 2e
Sb(OH)
4
+ 2OH
-0.465 2 [6]: 789 
P H
3
PO
3
(aq) + 3H+ + 3e
P(red)[note 1] + 3H2O -0.454 3 [10]
Bi Bi2O3(s) + 3H2O(l) + 6e Bi(s) + 6OH -0.452 6 [6]: 789 
Ta TaF2−
7
+ 7H+ + 5e
Ta(s) + 7HF(l) -0.45 5 [6]: 793 
In In3+
+ 2e
In+ -0.444 2 [6]: 788 
Cu Cu(CN)
2
+ e
Cu(s) + 2CN
-0.44 1 [13]
Fe Fe2+
+ 2e
Fe(s) -0.44 2 [7]
C 2CO
2
(g) + 2H+ + 2e
HOOCCOOH(aq) -0.43 2
Cr Cr3+
+ e
Cr2+
-0.407 1 [8]
Cd Cd2+
+ 2e
Cd(s) -0.4 2 [7]
Ti Ti3+
+ e
Ti2+
-0.37 1 [6]: 792 
Cu Cu
2
O
(s) + H2O + 2e
2Cu(s) + 2OH -0.36 2 [10]
Pb PbSO
4
(s) + 2e
Pb(s) + SO2−
4
-0.3588 2 [10]
Pb PbSO
4
(s) + 2e
Pb(Hg) + SO2−
4
-0.3505 2 [10]
Eu Eu3+
+ e
Eu2+
-0.35 1 [15]
In In3+
+ 3e
In(s) -0.34 3 [13]
Tl Tl+
+ e
Tl(s) -0.34 1 [13]
Ge Ge(s) + 4H+ + 4e GeH
4
(g)
-0.29 4
Co Co2+
+ 2e
Co(s) -0.28 2 [10]
P H
3
PO
4
(aq) + 2H+ + 2e
H
3
PO
3
(aq) + H2O
-0.276 2 [10]
N N2(g) + 8H+ + 6e 2NH+
4
-0.27 6 [16]
V V3+
+ e
V2+
-0.26 1 [7]
Ni Ni2+
+ 2e
Ni(s) -0.257 2 [8]
S 2HSO
4
+ 2H+ + 2e
S2O2−
6
+ 2H2O(l)
-0.253 2 [6]: 790 
As As(s) + 3H+ + 3e AsH
3
(g)
-0.23 3 [13]
N N2(g) + 5H+ + 4e N2H+
5
-0.23 4 [6]: 789 
Ga Ga+
+ e
Ga(s) -0.2 1 [8]
Ag AgI(s) + e Ag(s) + I
-0.15224 1 [10]
Ge GeO2(s) + 4H+ + 4e Ge(s) + 2H2O(l) -0.15 4 [16]
Mo MoO
2
(s) + 4H+ + 4e
Mo(s) + 2H2O -0.15 4
Si Si(s) + 4H+ + 4e SiH
4
(g)
-0.14 4
Sn Sn2+
+ 2e
Sn(s) -0.13 2
O O
2
(g) + H+ + e
HO
2
(aq)
-0.13 1
In In+ + e In(s) -0.126 1 [6]: 788 
Pb Pb2+
+ 2e
Pb(s) -0.126 2 [7]
W WO
2
(s) + 4H+ + 4e
W(s) + 2H2O -0.12 4
Ge GeO
2
(s) + 2H+ + 2e
GeO(s) + H2O -0.118 2 [8]
P P(red) + 3H+ + 3e PH
3
(g)
-0.111 3 [10]
C CO
2
(g) + 2H+ + 2e
HCOOH(aq) -0.11 2
Se Se(s) + 2H+ + 2e H
2
Se
(g)
-0.11 2 [6]: 790 
C CO
2
(g) + 2H+ + 2e
CO(g) + H2O -0.11 2
Sn α-SnO(s) + 2H+ + 2e Sn(s) + H2O -0.104 2 [6]: 788 
Cu Cu(NH
3
)+
2
+ e
Cu(s) + 2NH
3
(aq)
-0.1 1 [13]
Nb Nb2O5(s) + 10H+ + 4e 2Nb3+
+ 5H2O(l)
-0.1 4 [6]: 793 
W WO
3
(aq) + 6H+ + 6e
W(s) + 3H2O -0.09 6 [13]
Sn SnO
2
(s) + 2H+ + 2e
α-SnO(s) + H2O -0.088 2 [6]: 788 
Fe Fe
3
O
4
(s) + 8H+ + 8e
3Fe(s) + 4H2O -0.085 8 [17]
V VOH2+
+ H+ + e
V2+
+ H2O(l)
-0.082 1 [6]: 793 
P P(white) + 3H+ + 3e PH
3
(g)
-0.063 3 [10]
N N2O(g) + H2O(l) + 6H+ + 4e 2NH3OH+ -0.05 4 [6]: 789 
Fe Fe3+
+ 3e
Fe(s) -0.04 3 [12]
C HCOOH(aq) + 2H+ + 2e HCHO(aq) + H2O -0.034 2 [6]: 788 
H 2H+ + 2e H
2
(g)
0 2
Ag AgBr(s) + e Ag(s) + Br
0.07133 1 [10]
S S
4
O2−
6
+ 2e
2S
2
O2−
3
0.08 2
N N
2
(g) + 2H2O + 6H+ + 6e
2NH
4
OH
(aq)
0.092 6
Hg HgO(s) + H2O + 2e Hg(l) + 2OH 0.0977 2
Cu Cu(NH
3
)2+
4
+ e
Cu(NH
3
)+
2
+ 2NH
3
(aq)
0.1 1 [13]
Ru Ru(NH
3
)3+
6
+ e
Ru(NH
3
)2+
6
0.1 1 [15]
N N
2
H
4
(aq) + 4H2O + 2e
2NH+
4
+ 4OH
0.11 2 [4]
Mo H
2
MoO
4
(aq) + 6H+ + 6e
Mo(s) + 4H2O 0.11 6
Ge Ge4+
+ 4e
Ge(s) 0.12 4
C C(s) + 4H+ + 4e CH
4
(g)
0.13 4 [13]
C HCHO(aq) + 2H+ + 2e CH
3
OH
(aq)
0.13 2
S S(s) + 2H+ + 2e H
2
S
(g)
0.144 2 [6]: 790 
Sb Sb2O3(s) + 6H+ + 6e 2Sb(s) + 3H2O 0.15 6 [6]: 789 
Sn Sn4+
+ 2e
Sn2+
0.151 2 [8]
S HSO
4
+ 3H+ + 2e
SO
2
(aq) + 2H2O
0.158 2 [6]: 790 
Cu Cu2+
+ e
Cu+
0.159 1 [13]
U UO2+
2
+ e
UO+
2
0.163 1 [15]
S SO2−
4
+ 4H+ + 2e
SO
2
(aq) + 2H2O
0.17 2
Ti TiO2+
+ 2H+ + e
Ti3+
+ H2O
0.19 1
Sb SbO+
+ 2H+ + 3e
Sb(s) + H2O 0.2 3
Fe 3Fe
2
O
3
(s) + 2H+ + 2e
2Fe
3
O
4
(s) + H2O
0.22 2 [18]: p.100 
Ag AgCl(s) + e Ag(s) + Cl
0.22233 1 [10]
As H
3
AsO
3
(aq) + 3H+ + 3e
As(s) + 3H2O 0.24 3 [6]: 789 
Ru Ru3+
(aq) + e
Ru2+
(aq)
0.249 1 [19]
Pb PbO2(s) + H2O + 2e α-PbO(s) + 2OH 0.254 2 [6]: 788 
Ge GeO(s) + 2H+ + 2e Ge(s) + H2O 0.26 2
Hg Hg2Cl2(s) + 2e 2Hg(l) + 2Cl 0.27 2 [16]
U UO+
2
+ 4H+ + e
U4+
+ 2H2O
0.273 1 [15]
Re Re3+
+ 3e
Re(s) 0.300 3 [8]
At At + e At 0.3 1 [20]
Bi Bi3+
+ 3e
Bi(s) 0.308 3 [10]
C 2HCNO + 2H+ + 2e (CN)2 + 2H2O 0.330 2 [8]
Cu Cu2+
+ 2e
Cu(s) 0.337 2 [13]
V VO2+
+ 2H+ + e
V3+
+ H2O
0.337 1 [6]: 793 
Sb Sb2O4(s) + 2H+ + 2e Sb2O3(s) + H2O(l) 0.342 2 [6]: 789 
At At+ + 2e At- 0.36 2 [21]
Fe [Fe(CN)
6
]3−
+ e
[Fe(CN)
6
]4−
0.3704 1 [22]
C (CN)2 + 2H+ + 2e 2HCN 0.373 2 [8]
P (H2PO3)2(aq) + 2H+ + 2e 2H3PO3 0.38 2 [6]: 789 
S 2SO2(aq) + 2H+ + 2e S2O2−
3
+ H2O(l)
0.4 2 [6]: 790 
O O
2
(g) + 2H2O + 4e
4OH(aq) 0.401 4 [7]
Mo H
2
MoO
4
+ 6H+ + 3e
Mo3+
+ 4H2O
0.43 3
Ru Ru2+
(aq) + 2e
Ru 0.455 2 [19]
V VO(OH)+ + 2H+ + e VOH2+
+ H2O(l)
0.481 1 [6]: 793 
C CH
3
OH
(aq) + 2H+ + 2e
CH
4
(g) + H2O
0.5 2
S SO
2
(aq) + 4H+ + 4e
S(s) + 2H2O 0.5 4 [6]: 790 
S 4SO
2
(aq) + 4H+ + 8e
S4O2−
6
+ 2H2O(l)
0.51 8 [16]
Cu Cu+
+ e
Cu(s) 0.52 1 [13]
C CO(g) + 2H+ + 2e C(s) + H2O 0.52 2 [6]: 788 
I I
3
+ 2e
3I
0.53 2 [7]
Te TeO2(s) + 4H+ + 4e Te(s) + 2H2O(l) 0.53 4 [6]: 790 
Cu Cu2+
+ Cl + e
CuCl(s) 0.54 1 [16]
I I
2
(s) + 2e
2I
0.54 2 [7]
Au [AuI
4
]
+ 3e
Au(s) + 4I
0.56 3
As H
3
AsO
4
(aq) + 2H+ + 2e
H
3
AsO
3
(aq) + H2O
0.56 2 [6]: 789 
S S2O2−
6
+ 4H+ + 2e
2H2SO3 0.569 2 [6]: 790 
Au [AuI
2
]
+ e
Au(s) + 2I
0.58 1
Mn MnO
4
+ 2H2O + 3e
MnO
2
(s) + 4OH
0.595 3 [1]
S S
2
O2−
3
+ 6H+ + 4e
2S(s) + 3H2O 0.6 4 [6]: 790 
Fe Fc+
+ e
Fc(s) 0.63 1 Substantial literature variation[23]
Mo H
2
MoO
4
(aq) + 2H+ + 2e
MoO
2
(s) + 2H2O
0.65 2
N HN3(aq) + 11H+ + 8e 3NH+
4
0.69 8 [16]
O O
2
(g) + 2H+ + 2e
H
2
O
2
(aq)
0.695 2 [8]
Sb Sb2O5(s) + 4H+ + 4e Sb2O3(s) + 2H2O 0.699 4 [6]: 789 
C + 2H+ + 2e 0.6992 2 [10]
V H2V10O4−
28
+ 24H+ + 10e
10VO(OH)+ + 8H2O(l) 0.723 10 [6]: 793 
Pt PtCl2−
6
+ 2e
PtCl2−
4
+ 2Cl
0.726 2 [15]
Fe Fe
2
O
3
(s) + 6H+ + 2e
2Fe2+
+ 3H2O
0.728 2 [18]: p.100 
Se H
2
SeO
3
(aq) + 4H+ + 4e
Se(s) + 3H2O 0.74 4 [8]
At AtO+ + 2H+ + 2e At+ + H2O 0.74 2 [21]
Tl Tl3+
+ 3e
Tl(s) 0.741 3 [8]
No No3+
+ e
No2+
0.75 1 [24]
Pt PtCl2−
4
+ 2e
Pt(s) + 4Cl
0.758 2 [15]
Br BrO + H2O(l) + 2e Br + 2OH 0.76 2 [6]: 791 
Po Po4+ + 4e Po 0.76 4 [8]
S (SCN)2 + 2e 2SCN- 0.769 2 [25][8]
Fe Fe3+
+ e
Fe2+
0.771 1 [8]
Hg Hg2+
2
+ 2e
2Hg(l) 0.7973 2 [8]
Ag Ag+
+ e
Ag(s) 0.7996 1 [10]
N 2NO
3
(aq) + 4H+ + 2e
N
2
O
4
(g) + 2H2O
0.803 2 [6]: 789 
Fe 2FeO2−
4
+ 5H2O + 6e
Fe
2
O
3
(s) + 10OH
0.81 6 [12]
Au [AuBr
4
]
+ 3e
Au(s) + 4Br
0.85 3
Hg Hg2+
+ 2e
Hg(l) 0.85 2
Ir [IrCl
6
]2−
+ e
[IrCl
6
]3−
0.87 1 [6]: 153 
Mn MnO
4
+ H+ + e
HMnO
4
0.9 1
Po Po4+ + 2e Po2+ 0.9 2 [8]
Hg 2Hg2+
+ 2e
Hg2+
2
0.91 2 [13]
Pd Pd2+
+ 2e
Pd(s) 0.915 2 [15]
Au [AuCl
4
]
+ 3e
Au(s) + 4Cl
0.93 3
N NO
3
+ 3H+ + 2e
HNO2(aq) 0.94 2 [6]: 789 
Mn MnO
2
(s) + 4H+ + e
Mn3+
+ 2H2O
0.95 1
N NO
3
(aq) + 4H+ + 3e
NO(g) + 2H2O(l) 0.958 3 [7]
Au [AuBr
2
]
+ e
Au(s) + 2Br
0.96 1
Fe Fe
3
O
4
(s) + 8H+ + 2e
3Fe2+
+ 4H2O
0.98 2 [18]: p.100 
Xe [HXeO
6
]3−
+ 2H2O + 2e
[HXeO
4
]
+ 4OH
0.99 2 [6]: 792 [26]
N HNO2(aq) + H+ + e NO(g) + H2O(l) 0.996 1 [6]: 789 
At HAtO + H+ + e At + H2O 1.0 1 [20]
V [VO
2
]+
(aq) + 2H+ + e
[VO]2+
(aq) + H2O
1 1 [27]
Te H
6
TeO
6
(aq) + 2H+ + 2e
TeO
2
(s) + 4H2O
1.02 2 [27]
N NO2(g) + 2H+ + 2e NO(g) + H2O(l) 1.03 2 [16]
Br Br
3
+ 2e
3Br
1.05 2 [16]
Sb Sb2O5(s) + 2H+ + 2e Sb2O4(s) + H2O(l) 1.055 2 [6]: 789 
I ICl
2
+ e
2Cl
+ I(s)
1.06 1 [16]
Br Br
2
(l) + 2e
2Br
1.066 2 [10]
N N2O4(g) + 2H+ + 2e 2HNO2 1.07 2 [6]: 789 
Br Br
2
(aq) + 2e
2Br
1.0873 2 [10]
Ru RuO
2
+ 4H+ + 2e
Ru2+
(aq) + 2H2O
1.120 2 [19]
Cu Cu2+
+ 2CN
+ e
Cu(CN)
2
1.12 1 [13]
I IO
3
+ 5H+ + 4e
HIO(aq) + 2H2O 1.13 4 [6]: 791 
O H2O2(aq) + H+ + e H2O(l) + HO• 1.14 1 [6]: 790 
Au [AuCl
2
]
+ e
Au(s) + 2Cl
1.15 1
Se HSeO
4
+ 3H+ + 2e
H
2
SeO
3
(aq) + H2O
1.15 2 [6]: 790 
Ag Ag
2
O
(s) + 2H+ + 2e
2Ag(s) + H2O 1.17 2
Cl ClO
3
+ 2H+ + e
ClO
2
(g) + H2O
1.175 1 [6]: 791 
Xe [HXeO
6
]3−
+ 5H2O + 8e
Xe(g) + 11OH 1.18 8 [26]
Pt Pt2+
+ 2e
Pt(s) 1.188 2 [15]
Cl ClO
2
(g) + H+ + e
HClO
2
(aq)
1.19 1 [28]
I 2IO
3
+ 12H+ + 10e
I
2
(s) + 6H2O
1.2 10 [16]
Mn MnO
2
(s) + 4H+ + 2e
Mn2+
+ 2H2O
1.224 2 [10]
O O
2
(g) + 4H+ + 4e
2H2O 1.229 4 [7]
N N2H+
5
+ 3H+ + 2e
2NH+
4
1.28 2 [6]: 789 
Cl ClO
4
+ 2H+ + 2e
ClO
3
+ H2O
1.23 2 [29]
Ru [Ru(bipy)
3
]3+
+ e
[Ru(bipy)
3
]2+
1.24 1 [1]
Xe [HXeO
4
]
+ 3H2O + 6e
Xe(g) + 7OH 1.24 6 [6]: 792 [26]
N 2NO
3
+ 12H+ + 10e
N2(g) + 6H2O(l) 1.25 10 [6]: 789 
Tl Tl3+
+ 2e
Tl+
1.25 2 [6]: 788 
N 2HNO2(aq) + 4H+ + 4e N2O(g) + 3H2O(l) 1.297 4 [6]: 789 
Cr Cr
2
O2−
7
+ 14H+ + 6e
2Cr3+
+ 7H2O
1.38 6 [6]: 793 
N NH3OH+ + 2H+ + 2e NH+
4
+ H2O(l)
1.35 2 [6]: 789 
Cl Cl
2
(g) + 2e
2Cl
1.36 2 [7]
Ru RuO
4
(aq) + 8H+ + 5e
Ru2+
(aq) + 4H2O
1.368 5 [19]
Ru RuO
4
+ 4H+ + 4e
RuO
2
+ 2H2O
1.387 4 [19]
Co CoO
2
(s) + 4H+ + e
Co3+
+ 2H2O
1.42 1
N 2NH
3
OH+
+ H+ + 2e
N
2
H+
5
+ 2H2O
1.42 2 [4]
I 2HIO(aq) + 2H+ + 2e I
2
(s) + 2H2O
1.44 2 [6]: 791 
Br BrO
3
+ 5H+ + 4e
HBrO(aq) + 2H2O 1.447 4 [6]: 791 
Pb β-PbO
2
(s) + 4H+ + 2e
Pb2+
+ 2H2O
1.46 2 [13]
Pb α-PbO
2
(s) + 4H+ + 2e
Pb2+
+ 2H2O
1.468 2 [13]
Br 2BrO
3
+ 12H+ + 10e
Br
2
(l) + 6H2O
1.48 10
At HAtO3 + 4H+ + 4e HAtO + 2H2O 1.5 4 [20]
Mn MnO
4
+ 8H+ + 5e
Mn2+
+ 4H2O
1.51 5 [16]
O HO
2
+ H+ + e
H
2
O
2
(aq)
1.51 1
Au Au3+
+ 3e
Au(s) 1.52 3
Ru RuO2−
4
(aq) + 8H+ + 4e
Ru2+
(aq) + 4H2O
1.563 4 [19]
N 2NO(g) + 2H+ + 2e N2O(g) + H2O(l) 1.59 2 [6]: 789 
Ni NiO
2
(s) + 2H+ + 2e
Ni2+
+ 2OH
1.59 2
Ce Ce4+
+ e
Ce3+
1.61 1
Cl 2HClO(aq) + 2H+ + 2e Cl
2
(g) + 2H2O
1.63 2 [28]
I IO
4
+ 2H+ + 2e
IO
3
+ H2O
1.64 2 [29]
Ag Ag
2
O
3
(s) + 6H+ + 4e
2Ag+
+ 3H2O
1.67 4
Cl HClO
2
(aq) + 2H+ + 2e
HClO(aq) + H2O 1.67 2 [28]
Pb Pb4+
+ 2e
Pb2+
1.69 2 [13]
Mn MnO
4
+ 4H+ + 3e
MnO
2
(s) + 2H2O
1.7 3 [16]
Br BrO
4
+ 2H+ + 2e
BrO
3
+ H2O
1.74 2 [29]
Ag AgO(s) + 2H+ + e Ag+
+ H2O
1.77 1
N N2O(g) + 2H+ + 2e N2(g) + H2O(l) 1.77 2 [6]: 789 
O H
2
O
2
(aq) + 2H+ + 2e
2H2O 1.78 2 [28]
Au Au+
+ e
Au(s) 1.83 1 [13]
Co Co3+
+ e
Co2+
1.92 1 [8]
Ag Ag2+
+ e
Ag+
1.98 1 [13]
O S
2
O2−
8
+ 2e
2SO2−
4
2.01 2 [10]
O O
3
(g) + 2H+ + 2e
O
2
(g) + H2O
2.075 2 [15]
Mn HMnO
4
+ 3H+ + 2e
MnO
2
(s) + 2H2O
2.09 2
Xe XeO
3
(aq) + 6H+ + 6e
Xe(g) + 3H2O 2.12 6 [6]: 792 [26]
Xe H
4
XeO
6
(aq) + 8H+ + 8e
Xe(g) + 6H2O 2.18 8 [6]: 792 [26]
Fe FeO2−
4
+ 8H+ + 3e
Fe3+
+ 4H2O
2.2 3 [30]
Xe XeF
2
(aq) + 2H+ + 2e
Xe(g) + 2HF(aq) 2.32 2 [26][28]
O HO• + H+ + e H2O(l) 2.38 1 [6]: 790 
Xe H
4
XeO
6
(aq) + 2H+ + 2e
XeO
3
(aq) + 3H2O
2.42 2 [26][6]: 792 
F F
2
(g) + 2e
2F
2.87 2 [6]: 153 [7][13]
Cm Cm4+ + e Cm3+ 3.0 1 Estimated[3]
F F
2
(g) + 2H+ + 2e
2HF(aq) 3.077 2 [3]
Tb Tb4+ + e Tb3+ 3.1 1 Estimated[3]
Pr Pr4+ + e Pr3+ 3.2 1 Estimated[3]
Kr KrF
2
(aq) + 2e
Kr(g) + 2F
(aq)
3.27 2 Estimated[31]

See also

[edit]

Notes

[edit]
  1. ^ a b Not specified in the indicated reference, but assumed due to the difference between the value −0.454 and that computed by (2×(−0.499) + (−0.508))/3 = −0.502, exactly matching the difference between the values for white (−0.063) and red (−0.111) phosphorus in equilibrium with PH3.

References

[edit]
  1. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg bh bi bj bk bl bm bn bo bp bq br bs bt bu bv Lide, David R., ed. (2006). CRC Handbook of Chemistry and Physics (87th ed.). Boca Raton, FL: CRC Press. ISBN 0-8493-0487-3.
  2. ^ Greenwood and Earnshaw, p. 1263
  3. ^ a b c d e Bratsch, Stephen G. (July 29, 1988) [1 March 1988]. "Standard electrode potentials and temperature coefficients in water at 298.15 K" (PDF). Journal of Physical and Chemical Reference Data. 18 (1). American Institute of Physics (published 1989): 1–21. doi:10.1063/1.555839 – via NIST.
  4. ^ a b c d Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
  5. ^ a b c d e f g h i j k l m n o p q Vanýsek, Petr (2011). "Electrochemical Series". In Haynes, William M. (ed.). CRC Handbook of Chemistry and Physics (92nd ed.). CRC Press. pp. 5–80–9. ISBN 978-1-4398-5512-6.
  6. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg bh bi bj bk bl bm bn bo bp bq br bs bt bu bv bw bx by bz ca cb cc cd ce Atkins, Peter; Overton, Tina; Rourke, Jonathan; Weller, Mark; Armstrong, Fraser; Hagerman, Michael (2010). Inorganic Chemistry (5th ed.). New York: W. H. Freeman. ISBN 978-1-42-921820-7.
  7. ^ a b c d e f g h i j k l m Atkins, Peter W. (1997). Physical Chemistry (6th ed.). W.H. Freeman. ISBN 9780716734659.
  8. ^ a b c d e f g h i j k l m n o p q r s t u v Petr Vanysek. "Electrochemical series" (PDF). depa.fquim.unam.mx. Archived from the original (PDF) on 2021-09-16.
  9. ^ David R. Lide, ed., CRC Handbook of Chemistry and Physics, Internet Version 2005, http://www.hbcpnetbase.com Archived 2017-07-24 at the Wayback Machine, CRC Press, Boca Raton, FL, 2005.
  10. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab Vanýsek, Petr (2012). "Electrochemical Series". In Haynes, William M. (ed.). Handbook of Chemistry and Physics (93rd ed.). CRC Press. pp. 5–80. ISBN 9781439880494.
  11. ^ Aylward, Gordon; Findlay, Tristan (2008). SI Chemical Data (6th ed.). Wiley. ISBN 978-0-470-81638-7.
  12. ^ a b c d e "compounds information". Iron. WebElements Periodic Table of the Elements.
  13. ^ a b c d e f g h i j k l m n o p q r s t u Bard, Allen J.; Parsons, Roger; Jordan, Joseph (1985). Standard Potentials in Aqueous Solution. CRC Press. ISBN 978-0-8247-7291-8.
  14. ^ Brown, Susan A.; Brown, Paul L. (2020). "The pH-potential diagram for polonium". The Aqueous Chemistry of Polonium and the Practical Application of its Thermochemistry. Elsevier. doi:10.1016/b978-0-12-819308-2.00004-8. ISBN 978-0-12-819308-2. S2CID 213141476.
  15. ^ a b c d e f g h i j Bard, A.J.; Faulkner, L.R. (2001). Electrochemical Methods. Fundamentals and Applications (2nd ed.). Wiley. ISBN 9781118312803.
  16. ^ a b c d e f g h i j k l Lee, J. L. (1983) [1977]. A New Concise Inorganic Chemistry (3rd ed.). London / Wokingham, Berkshire: English Language Book Society & Van Nostrand Reinhold (UK). p. 107. ISBN 0-442-30179-0. OL 4079768W – via the Internet Archive.
  17. ^ Pourbaix, Marcel (1966). Atlas of Electrochemical Equilibria in Aqueous Solutions. Houston, Texas; Cebelcor, Brussels: NACE International. OCLC 475102548.
  18. ^ a b c Pang, Suh Cem; Chin, Suk Fun; Anderson, Marc A. (July 2007). "Redox equilibria of iron oxides in aqueous-based magnetite dispersions: Effect of pH and redox potential". J. Colloid Interface Sci. 311 (1): 94–101. Bibcode:2007JCIS..311...94P. doi:10.1016/j.jcis.2007.02.058. PMID 17395194. Retrieved 2017-03-26.
  19. ^ a b c d e f Greenwood and Earnshaw, p. 1077
  20. ^ a b c Lavrukhina, Avgusta Konstantinovna; Pozdni︠a︡kov, Aleksandr Aleksandrovich (1970). Analytical chemistry of technetium, promethium, astatine and francium. Ann Arbor: Ann Arbor-Humphrey Science Publishers. p. 237. ISBN 0-250-39923-7. OCLC 186926.
  21. ^ a b Champion, J.; Alliot, C.; Renault, E.; Mokili, B. M.; Chérel, M.; Galland, N.; Montavon, G. (2009-12-16). "Astatine Standard Redox Potentials and Speciation in Acidic Medium" (PDF). The Journal of Physical Chemistry A. 114 (1). American Chemical Society (ACS): 576–582. doi:10.1021/jp9077008. ISSN 1089-5639. PMID 20014840. S2CID 15738065.
  22. ^ Rock, Peter A. (February 1966). "The Standard Oxidation Potential of the Ferrocyanide-Ferricyanide Electrode at 25° and the Entropy of Ferrocyanide Ion". The Journal of Physical Chemistry. 70 (2): 576–580. doi:10.1021/j100874a042. ISSN 0022-3654.
  23. ^ Pavlishchuk, Vitaly V.; Addison, Anthony W. (January 2000). "Conversion constants for redox potentials measured versus different reference electrodes in acetonitrile solutions at 25°C". Inorganica Chimica Acta. 298 (1): 97–102. doi:10.1016/S0020-1693(99)00407-7.
  24. ^ Toyoshima, A.; Kasamatsu, Y.; Tsukada, K.; Asai, M.; Kitatsuji, Y.; Ishii, Y.; Toume, H.; Nishinaka, I.; Haba, H.; Ooe, K.; Sato, W.; Shinohara, A.; Akiyama, K.; Nagame, Y. (8 July 2009). "Oxidation of element 102, nobelium, with flow electrolytic column chromatography on an atom-at-a-time scale". Journal of the American Chemical Society. 131 (26): 9180–1. doi:10.1021/ja9030038. PMID 19514720.
  25. ^ Kaufmann, H. P. (1925). "Das freie Rhodan und seine Anwendung in der Maßanalyse. Eine neue Kennzahl der Fette" [Unbound rhodanium and its application to elemental analysis: A new measurement technique for fats]. Archiv der Pharmazie und Berichte der Deutschen Pharmazeutischen Gesellschaft (in German). 263: 675–721 – via HathiTrust.
  26. ^ a b c d e f g "compounds information". Xenon. WebElements Periodic Table of the Elements.
  27. ^ a b Cotton, F. Albert; Wilkinson, Geoffrey; Murillo, Carlos A.; Bochmann, Manfred (1999), Advanced Inorganic Chemistry (6th ed.), New York: Wiley-Interscience, ISBN 0-471-19957-5.
  28. ^ a b c d e Ghosh, Abhik; Berg, Steffen (2014). Arrow Pushing in Inorganic Chemistry: A logical approach to the chemistry of the main-group elements. Hoboken: Wiley. p. 12. ISBN 978-1-118-17398-5.
  29. ^ a b c Appelman, Evan H. (1973-04-01). "Nonexistent compounds. Two case histories". Accounts of Chemical Research. 6 (4). American Chemical Society (ACS): 113–117. doi:10.1021/ar50064a001. ISSN 0001-4842.
  30. ^ Courtney, Arlene. "Oxidation Reduction Chemistry of the Elements". Ch 412 Advanced Inorganic Chemistry: Reading Materials. Western Oregon University.
  31. ^ Leszczyński, P.J.; Grochala, W. (2013). "Strong Cationic Oxidizers: Thermal Decomposition, Electronic Structure and Magnetism of Their Compounds" (PDF). Acta Chim. Slov. 60 (3): 455–470. PMID 24169699. Archived (PDF) from the original on 2022-10-09.
[edit]